Gradients of Intercellular CO(2) Levels Across the Leaf Mesophyll.

نویسندگان

  • D F Parkhurst
  • S C Wong
  • G D Farquhar
  • I R Cowan
چکیده

Most current photosynthesis models, and interpretations of many wholeleaf CO(2) gas exchange measurements, are based on the often unstated assumption that the partial pressure of CO(2) is nearly uniform throughout the airspaces of the leaf mesophyll. Here we present measurements of CO(2) gradients across amphistomatous leaves allowed to assimilate CO(2) through only one surface, thus simulating hypostomatous leaves. We studied five species: Eucalyptus pauciflora Sieb. ex Spreng., Brassica chinensis L., Gossypium hirsutum L., Phaseolus vulgaris L., and Spinacia oleracea L. For Eucalyptus, maximum CO(2) pressure differences across the leaf mesophyll were 73 and 160 microbar when the pressures outside the lower leaf surface were 310 and 590 microbar, respectively. Using an approximate theoretical calculation, we infer that if the CO(2) had been supplied equally at both surfaces then the respective mean intercellular CO(2) pressures would have been roughly 12 and 27 microbar less than the pressures in the substomatal cavities in these cases. For ambient CO(2) pressures near 320 microbar, the average and minimum pressure differences across the mesophyll were 45 and 13 microbar. The corresponding mean intercellular CO(2) pressures would then be roughly 8 and 2 microbar less than those in the substomatal cavities. Pressure differences were generally smaller for the four agricultural species than for Eucalyptus, but they were nevertheless larger than previously reported values.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Seasonal time-course of gradients of photosynthetic capacity and mesophyll conductance to CO2 across a beech (Fagus sylvatica L.) canopy.

Leaf photosynthesis is known to acclimate to the actual irradiance received by the different layers of a canopy. This acclimation is usually described in terms of changes in leaf structure, and in photosynthetic capacity. Photosynthetic capacity is likely to be affected by mesophyll conductance to CO(2) which has seldom been assessed in tree species, and whose plasticity in response to local ir...

متن کامل

Stomatal responses to flooding of the intercellular air spaces suggest a vapor-phase signal between the mesophyll and the guard cells.

Flooding the intercellular air spaces of leaves with water was shown to cause rapid closure of stomata in Tradescantia pallida, Lactuca serriola, Helianthus annuus, and Oenothera caespitosa. The response occurred when water was injected into the intercellular spaces, vacuum infiltrated into the intercellular spaces, or forced into the intercellular spaces by pressurizing the xylem. Injecting 50...

متن کامل

Effects of leaf age and tree size on stomatal and mesophyll limitations to photosynthesis in mountain beech (Nothofagus solandrii var. cliffortiodes).

Mesophyll conductance, g(m), was estimated from measurements of stomatal conductance to carbon dioxide transfer, g(s), photosynthesis, A, and chlorophyll fluorescence for Year 0 (current-year) and Year 1 (1-year-old) fully sunlit leaves from short (2 m tall, 10-year-old) and tall (15 m tall, 120-year-old) Nothofagus solandrii var. cliffortiodes trees growing in adjacent stands. Rates of photosy...

متن کامل

Leaf Conductance in Relation to Rate of CO(2) Assimilation: III. Influences of Water Stress and Photoinhibition.

Rates of CO(2) assimilation and leaf conductances to CO(2) transfer were measured in plants of Zea mays during a period of 14 days in which the plants were not rewatered, and leaf water potential decreased from -0.5 to -8.0 bar. At any given ambient partial pressure of CO(2), water stress reduced rate of assimilation and leaf conductance similarly, so that intercellular partial pressure of CO(2...

متن کامل

Carbon Dioxide Diffusion inside Leaves

Leaves are beautifully specialized organs that enable plants to intercept light necessary for photosynthesis. The light is dispersed among a large array of chloroplasts that are in close proximity to air and yet not too far from vascular tissue, which supplies water and exports sugars and other metabolites. To control water loss from the leaf, gas exchange occurs through pores in the leaf surfa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 86 4  شماره 

صفحات  -

تاریخ انتشار 1988